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Section 1

Summary of Program for
Reporting Period

gi Program Objectives

To develop practical, low cost, real time methods for

suppressing noise which has been acoustically added to

speech.

To demonstrate that through the incorporation of the

noise suppression methods, speech can be effectively
analysed for narrow band digital transmission in practical

operating environments.

Summary of Tasks and Results

Introduction

This Semi-Annual technical report describes the status

of work performed during the period 1 October 1978 through

31 March 1979 under ARPA order 3301, c;;ftact

““N00173-79-C-0045 with Naval Research Laboratories.
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A SPECTRAL SUBTRACTION ALGORITHM FOR
SUPPRESSION OF ACOUSTIC NOISE IN SPEECH

Steven F. Boll

Abstract
2 ' Spectral subtraction has been shown to be an effective
én approach for reducing ambient acoustic noise in order to
é improve the intelligibility and quality of digitally
compressed speech. This paper presents a

implementation specifications to improve

requirements. It is shown spectral subtraction

frequency domain filter which changes with the time

algorithm

performance and minimize algorithm computation and memory

implemented in terms of a ronstationary, multiplicative,

épectral characteristics of tlie speech. Using this filter a

speech activity detector is defined and used to allow the

algorithm to adapt automatically to changing ambient noise

environments. Also the bandwidth information of this filter

is used to further reduce the residual narrowband noise

components which remain after spectral subtraction.
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REDUCTION OF NONSTATIONARY NOISE IN

SPEECH USING LMS ADAPTIVE NOISE CANCELLING

Dennis Pulsipher, Steven F. Boll, Craig Rushforth, LaMar Timothy
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Abstract

Nonstationary acoustic noise with energy possibly equal
to or greater than the speech is suppressed using a two
microphone implementation of adaptive noise cancellation.
The primary noise added to the speech is reduced by
subtracting a filtered version of the second microphone
reference noise. The reference noise filter is adaptively
up dated using the Widrow-Hoff LMS algorithm. The
effectiveness of noise suppression depends directly on the
ability of the filter to estimate the transfer function
relating the primary and reference noise channels. A study
of the filter length required to achieve a desired noise
reduction level in a hard-walled room is presented. Results
demonstrating noise reduction in excess 104B in an

environment with 0dB signal to noise ratio are presented.

This abstract is taken from the Ph.D dissertation of
Dennis Pulsipher. This dissertation entitled "Application
of Adaptive Noise Cancellationto Noise Reduction in Audio

Signals" has been published as a technical report No.

UTEC-CSc-79-022.
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RANK-ORDER SPEECH CLASSIFICATION ALGORITHM
(RASCAL)

Ben Cox

L. K. Timothy

Abstract

This paper describes a theoretical and experimental
investigation for detecting the presence of speech in wide
band noise. A robust algorithm for making the
silence-voiced-unvoiced decision is described. This
algorithm is based on a nonparametric rank-order statistical
signal-detection scheme that does not require a training set
of data and maintains a constant false-alarm rate for a
broad class of noise inputs corresponding to a sinqie
decision threshold. The nonparametric rank-order decision
procedure is the multiple use of the two-sample Savage T
statistic. The performance of this detector is evaluated
and compared to that obtained by manually classifying twenty
recorded utterances with 39, 30, 20, 10, and 0 decibel
signal-to-nois<¢ ratios. In limited testing, the average
probability of misclassification is less that 5 percent, 12
Percent, and 55 percent for signal-to-noise ratios of 39,

20, and 0 decibels respectively.




ESTIMATING THE PARAMETERS OF A NOISY ALL-POLE PROCESS

USING POLE-ZERO MODELING

W. J. DONE

C. K. RUSHFORTH

Abstract

Linear predictive coding (LPC) has been successfully
applied to the encoding of speech and other time series. It
has been widely observed, however, that the performance of
an LPC algorithm deteriorates rapidly in the presence of
background noise. 1In this paper, we describe and discuss
one approach to the identification of a time series

corrupted by additive white noise.

A common approach to this problem is to prefilter the
noisy time series, and then to apply an estimation algorithm
which treats the time series as if it were noise-free. We
describe an alternative approach which involves modifying
the time-series model at the outset to the account for the
presence of noise. An estimation algorithm 1is then
developed for this modified model. We discuss the
development of the model, the estimation algorithm, and some

representative experimental results.




This abstract is taken from the Ph.D. dissertation of

W.Jd. Done

entilted, “Estimation of the Parameters of an
Autoregressive Process in the Presence of Additive White
Noise." This diss=2rtation has béen published as technical

report No. UTEC-CSc-79-021.
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EVALUATION OF THE STEIGLITZ ALGORITHM FOR ESTIMATING
THE PARAMETERS OF AN ARMA PROCESS

W. J. Done
C. K. Rushforth

Abstract

Steiglitz has recently described an algorithm for
estimating the parameters of an
autoregressive-moving-average (ARMA) process. This
algorithm has application, for example, to the problem of
determining the poles and zeros of the vocal-tract transfer

function.

In this paper, we report and discuss the results of a
number of simulations conducted using the Steiglitz
algorithm. The bulk of the experiments involved driving the
ten-pole, two-zero filter described in (2) with a single
pulse, with a short pulse train, and with samples of white
Gaussian noise. In each of these cases, we evaluated the
effects of such processing options as windowing,
pre=mphasis, and cepstral-domain filtering. We also discuss
and compare results obktained by applying the Steiglitz
algorithm and a Newton-Raphson conditional

maximum-likelihood algorithm to a first-order process.
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This abstract is taken from the Ph.D. dissertation of

W.J. Done entitled, "Estimation of the Parameters of an

Autoregressive Process in the Presence of Additive White

Noise." This dissertation has been published as technical

report, No. UTEC-CSc-79-021.
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RATE/PITCH MODIFICATION
USING THE CONSTANT-Q TRANSFORM

James E. Youngberg

Abstract

Modification of the rate of occurrence of acoustic
events without altering frequency content, and modification
of pitch without changing time scale are presented as
equivalent problems. While the short-time Fourier transform
has been used to solve the rate modification problem, it is
not a natural tool. It lacks the scaling property of the
Fourier transform. The Constant-Q transform, on the other
hand, exhibits this properly. A more natural rate/pitch
modification system using the Constant-Q transform is
presented which performs well with rate/pitch changes by

factors of between one-third and three.
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A SPECTRAL SUBTRACTION ALGORITHM FOR

SUPPRESSION OF ACOUSTIC NOISE IN SPEECH

Steven F. Boll

To be presented at ICASSP-79
April 2-4, 1979
Washington, D.C.
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A Spectral Subtraction Algorithm for
Suppression of Acoustic Noise in Speech
Steven F. Boll
Computer Science Department
University of Utah
Salt Lake City, Utah 84112

Spectral subtraction has been shown to be an
effective approach for reducing ambient acoustic roise
in order to improve the intelligibility and quality of
digitally compressed speech. This paper presents a set
of implementation specifications to improve algorithm
performance and minimize algorithm computation and
memory requirements. It is shown spectral subtraction
can be implemented in terms of a nonstationary,
multiplicative, frequency domain filter which changes
with the time varying spectral characteristics of the
speech. Using this filter a speech activity detector
is defined and used to allow the algorithm to adapt
automatically to changing ambient noise environments.
Also the bandwidth information of this filter is used
to further reduce the residual narrowband noise

components which remain after spectral subtraction.

.




Introduction

Digital speech compression systems operating in
environments with high ambient acoustic noise may
require additional noise suppression to érocess speech
having acceptable intelligibility and quality [1].
Previous results to suppress noise using the spectral
subtraction approach have demonstrated quantitative
improvements in quality and intelligibility [2], [3].
This paper describes a number of techniques for
improving the efficiency and effectiveness of this
approach. It is shown that the algorithm can be
implemented in terms of a nonstationary,
multiplicative, frequency domain filter.
Characteristics of this filter provide information for
further reduction of spectral error and detection of
speech activity. 1In addition techniques are presented
for increasing algorithm efficiency, decreasing memory
requirements, decreasing processing delay, and
simplifying requirements for interfacing the noise
suppressor with the subsequent speech compression

analyzer.

Signal Estimation Using Spectral Subtraction

Signal x (i) digitized from a single microphone
consists of the sum of speech Sp(i) and ambient

acoustic noise n(i). It is assumed that the noise is

-]12-
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locally stationary to the extent that average value of
its spectral magnitude during speech activity is equal
to that measured just prior to speech activity. Using
these assumptions the spectral subtraction algorithm
attempts to suppress the additive acoustic noise

component n(i) from x(i) by the following steps:

1. Segment the noisy data into windowed analysis

blocks of length M samples, x({(i),i=0,1...,M-1.
2. Compute the N point DFT X(k) of data x(i).

3. Estimate the speech spectrum S (k) by
subtracting the average noise spectral magnitude, B (k)
= ave|N(k)|, calculated during non-speech activity,
from |X(k)]|:

S(k) = [IX(k)|-B(k)] exp(j ARG{X(k)]) k=0,1,...,N-1

The motivation behind this approach is to subtract
from the noisy speech spectrum, an estimate of the
noise spectrum which is readily available. The
magnitude of N(k) is replaced by its average value,
B(k) , and the phase of N(k) is replaced by the phase of
X(k).

The spectral error using this approach is given by

S(k)-Sp(k) = N(k)-B(k) exp(j ARG[X(k)])

——— ———— —




A simple method for reducing this error is
half-wave rectification. With it the estimator becomes

: : S(k) = {X(k)-B(k)}exp(j ARG[X(k)]) IX(k)I>B(k)
_ 0 IX(k) | <B(k)

Multiplicative Filter

The spectral subtraction estimator can be
compactly defined wusing a multiplicative frequency
filter, H(k):

H(k) = (1-B(k)/IX(k)I)(1/2 + 1/2 SGN(|X(k) |-B(k)))

The speech estimate §S(k) is then given by
S(k)=H(k)X(k). Examination of the expression for H(k)
shows that H(k) = 0 when |X(k)|<B(k), (band stop) and
H(k)"1 for |[|X(k)I|>>B(k), (band pass). In addition an
estimate of the signal to noise ratio SNR is directly
available from H(k) at each frequency bin k:

SNR(k) = S(k)/B(k) = H(k)/(1-H(k))

Residual Noise Suppression

After half-wave rectification speech plus noise

above B(k) remains. In the absence of spzech activity,
the noise residual N(k)-B(k) exp (j ARG[n(k)]) will
exhibit itself as randomly spaced narrowband spikes E
separated by intervals, having zero magnitude. The

corresponding frequency filters H(k) will have the same

zero magnitude intervals. Non-zero amplitudes will

-14-
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have values given by

H(k) = 1-B(k)/IN(k) |

These values, being deviations of the noise
magnitude spectrum above its mean correspond to the
noise residual. Assuming the noise to be a zero mean,
Gaussian process, the magnitude spectrum of |N| will
have a Rayleigh distribution. Using this information
it can be shown that less than 1% of the time will H(k)
exceed a value of 0.6 (2.5 times its mean, B(k)) when
speech is absent. This suggests that the noise
residual could be eliminated 99% of the time by simply
zeroing all spectral components which corresponds to
values of H(k) less than 0.6. However, during speech
activity, assuming Gaussian speech and a signal to
noise ratio of 104B, H(k) will take on values below
0.6, about 36% of the time. Thus simply rejecting all
spectra X(k) corresponding to H(k) below 0.6 could in
some instances incorrectly remove 1low energy speech

spectra.

In order to reduce the noise residual but retain
low energy speech in X(k), a magnitude plus bandwidth
measurement test is used. Sections of H(k) having
bandwidths less than 300Hz and amplitudes less than 0.6
are classified as being due only to noise. Here
bandwidth is defined as the distance between successive

frequency bins having zero amplitude. The 300Hz figure

-15=
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was empirically determined after examining an ensemble
of subtractive filter frequency responses taken during
non-speech activity using helicopter noise. These
noise only sections are attenuated by an additional

204B.

This secondary noise suppression procedure was
applied to all values of H(k) above 800Hz. Below 800HZz
narrowband harmonics essential to accurate pitch
detection can be present. This procedure could
incorrectly attenuate them causing pitch tracking
errors. Therefore in this frequency region only bias
removal and half-wave rectification is employed. The
800Hz value was picked to equal the cutoff frequency of
the low-pass filter applied to the signal prior to down
sampling for SIFT (4] pitch detection. Figure 1 shows
examples of subtractive filters and corresponding
magnitude spectra before and after residual noise
reduction computed for a frame of noise only signal.
Figure 2 shows examples of subtractive filters and
corresponding magnitude spectra before and after

residual noise reduction during voiced speech.

Algorithm Implementation

The task of spectral subtraction is to provide the
vocoder analyzer with a buffer of noise suppressed

speech in a time interval which is not only 1less than

-16-
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the buffer 1length time but which is also short enough
to allow the analyzer to compute and transmit the
vocoder channel parameters. This interfacing
constraint imposes certain conditions on the
implementation. The algorithm should use the same
buffer size as the analyzer. Assuming a single
processor it must compute the noise suppressed speech
in the time left over after the analyzer calculations.
It must supply the processed speech with minimum delay.
In addition to the basic noise suppression procedures,
it must monitor the signal to noise environment and
update the average noise bias spectrum B(k) if

necessary.

Data Segmentation

Buffer lengths of speech compression analyzers
come in all sizes. Matching the noise suppression
analysis buffer to that used by the vocoder results in
the simplest implementation. This approach, however,
leads to two operational compromises. First, if the
buffer is not a power of two then 2zeros must be
appended before transforming. Second, if buffer
lengths are to be matched, with minimum delay, then no
overlapping (and thus no windowing) is allowed. The
effect of padding with 2zeros simply means lower

efficiency (fewer points processed per FFT). It has a

-17-




positive effect of reducing the amount of temporal
aliasing due to spectral modification [5). No overlap
of time windows doubles the processing speed. The
possible detrimental effect of having no time window
consists of inducing discontinuities at the buffer
boundaries. Reconstituted waveforms from successive
analysis buffers will not necessarily agree at the
boundary. In fact, in 1listening to the processed
speech entering the vocoder, a low-level but distinct
clicking sound can sometimes be heard having a
frequency equal to the analysis frame rate. The
clicking is due to waveform discontinuities at the
boundaries. If the data had been weighted by
half-overlapped hanning windows, the discontinuity
effect could be minimized. However, since the speech
is to be further processed by a compression analyzer
using the same buffer size, the discontinuities do not

cause noticeable problems.

Bidirectional Biplexed DFT

Spectral subtraction requires two DFT's to be
performed: a forward transform of the noisy signal
x(i) and an inverse transform of the noise suppressed
spectrum, S(k)=X(k)H(k). Armantrout [6] developed a
biplexed DFT which simultaneously computes the forward

transform of x(i) and the inverse transform of S(k)

-18-
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from the previous frame. The 1loading procedure is

given as

T AT

RE(i) = xo(i) + SR(i)/N
Im(i) = xe(i) - SI(i)/N

where xe(i) = (x(i) + x(N-i))/2, even part of x(i) |

xo (1) (x(i) - x(N-i))/2, odd part of x(i)

SR (1)

Real part of S(i)

SI (i) Imaginary part of S(i)
N = DFT size

Let C(k) + jD(k) = DFT {RE(i)+jIM(i)}
; Then
| s(k) = C(k)

Re{X(k)} = (D(k) + D(N-k))/2, even part of D(k)

Im{X(k)} = (D(k) + D(N-k))/2, odd part of D(k)
where
s (k) equals the inverse DFT of S(k)
Re{X(k)} = Real Part of X(k)

Im{X(k)} = Imaginary part of X(k)

In addition, the even-odd symmetries of the
signals can be used to reduce the storage requirement
in half. That is, the even part of the signal can be

i stored in the first N/2+1 locations and the odd part of

i the signal in the last N/2-1 locations.

Speech Activity Detection

~19-
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Effective noise suppression requires an accurate
estimate of the average noise bias, B(k). If the
ambient noise becomes either louder or softer, the bias
should be updated during the next interval of

non-speech activity.

For detecting the absence of speech activity
during a stationary noise interval and/or detecting a
decrease in the noise bias, the estimated signal to
noise ratio:

SNR (k) =H (k) / (1-H(k))=S (k) /B (k)
can be used. Computing the average SNR(k) over all
frequency bins provides a measure the relative energy
of S to B. During the absence of speech activity, the
SNR was found to be less than -12dB over a wide range
of noise environments. This measure also can detect

when the ambient noise becomes less. In this instance

more values of X(k) will lie below B(k)and thus more

values of H(k) will be zero driving the average value
down. Thus the measure H/(1-H) averaged over all
frequency bins compared with the threshold -12dB was
used to signal speech absence and/or noise bias

reduction.

Noise Bias Increase Detection

_—
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Detecting when the Sverage noise bias has become
louder presents a more difficult problem since spectra
above the noise mean is assumed to be speech. As the
noise increases a larger percentage of X(k) lies above
B(k) . Thus if N (k) >>B (k) then H(k)~1. This
unfortunately is the identical situation found during a
high signal to noise ratio environment. The measure
that is needed is N(k)/B(k) or equivalently X(k)/B(k)
for Sp(k)=0. A procedure used to obtain N(k)/B(k) was
to average X(k)/B(k) = 1/1-H(k))over the top 300Hz of
the base band. If this average was greater thar 104B

for ten consecutive analysis frames then the noise bias

is updated.

Automatic Operation

Using the speech activity and bias increase
detectors the spectral subtraction algorithm will run
without operator intervention. The detectors provide
one of many possible schemes for adaptive operation in
a changing noise environment. Others are possible and
proper procedures for correct adaption still remain a
research issue probably best resolved using a real-time

system employed in actual operating environments.

A block diagram showing the various algorithm

procedures is given in Figure 3.

-21-
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Discussion

Omitting the windowing and half overlapping
simplifies the interface requirements with the follow
on vocoder and doubles the throughput per transform of
the algorithm. This approach induces discontinuities
at the boundaries which are essentially ignored by the
speech analyzer. Using the bidirectional, biplexed DFT
produces only one frame of delay and takes advantage of
the symmetries of the real data to reduce FFT
computation by about one-half. Reduction of the
residual noise left after subtraction using the
amplitude-bandwidth test removes the majority of the
noise residual while retaining wide bandwidth, low
energy speech. However, noise spectral components
which exceed 2.5 times its mean or with bandwidths
greater than 300Hz will remain. These components, due
both to statistical randomness and nonstationary,
remain due to their resemblance to speech spectra.
Thus the algorithm is biased towards keeping low energy

speech and high energy noise.

A final modification to the multiplicative filter
to suppress the acodstic effect of the remaining noise
is to replace the zero amplitude frequency bins in H
with a small constant. Using 0.1 instead of 0.0 brings
the noise floor up, insures that the magnitude spectrum

is now everywhere positive, and reinstates the natural

=22
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ambient noise environment only now attenuated by

approximately 20dB.

It should be apparent that as the signal and noise
energies become egqual or the noise becomes highly
nonstationary this algorithm will break down. Speech
intelligibility in these situations can be improved
using noise suppression microphones [1] and/or two

microphone adaptive noise cancellation procedures [7].
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REDUCTION OF NONSTATIONARY ACOUSTIC NOISE IN
SPEECH USING LMS ADAPTIVE NOISE CANCELLING

Dennis Pulsipher Steven F. Boll Craig Rushforth LaMar Timothy

Sandia Laboratory University of
Utah

Nonstationary acoustic noise with.
energy possibly equal to or greater than
the speech it suppressed using a two
microphone implementation of adaptive
noise cancellation. The primary noise
added to the speech is reduced by
subtracting a filtered version of the
second microphone reference noise. The
reference noise filter is adaptively up
dated using the Widrow-Hoff LMS algorithm
[1). The effectiveness of noise
suppression depends directly on the:
ability of the filter to estimate the
transfer function relating the primary and
reference noise channels. A study of the
filter length required to achieve a
desired noise reduction level in e
hard-walled room is presented. Results:
demonstrating noise reduction in excess
18dB in an environment with 84B signal
noise ratio are presented.

Introduction

Let us assume that we are given x(t),
the sum of two mutually uncorrelated
signals, s(t) and n(t), and a third signal
v(t), which is mutually uncorrelated with
s(t). We can then form a signal estimate

(1) B(t) = x(t)-u(t)=s(t)+(n(t)-u(t)]

where u(t) is a noise estimate which we
will constrain to be a linearly filtered
version of v(t), (see Figure 1).
Minimizing the mean output power causes
the signal estimate 8(t) to be a least
mean squares fit to the signal s(t). The
minimization, of course, must be carried
out by choosing an h(t) (the impulse
response of the filter through which v(t)
is passed to
minimizes the power in 8(t). - We, then,
are looking for h(t) which satisfies:

Min(E(#(t)?))
h(t)

Block Solution

Let v , etc. be the value of
the corrolﬂond Qignal at time nT, where
T is the unnpltng interval.

Define the vectors

- —— I

University of

generate u(t)) which

University of
Utah Utah

(Z)V-[v(n)...v(n-L+1)]%‘-[h(l,n)...h(L,n)]

where L is the length of the filter to be
estimated and H is the filter.
Defining

T
(3) P = lenvn} R = E{thh }
yielding
(4) E(s72) = E{x } - 2P'H + B RH
which is a quadratic function of H. By
differentiating with respect to the
elements of H we get
(5) V = - 2P + 2RH.
Setting V=@ to find the optimal H , we get
(6) u* = R 1p,

The block solution optimal filter was
calculated by solving equation 6. The
filters were calculated using a standard
Levinson's recursion algorithm [2].

Adaptive Solution

To calculate H' adaptively a standard

steepest descent algorithm is used:
=H - uv

7
M nn+1 n n
where the parameter p controls convergence

and stability. Since, we do not have
access to V , we use a gradient estimate.
(8) eh = - 287Vn

which yields the algorithm

(9) Hpyy = By + 208,V

By defining the expected value of H,
as M, it can be shown that

(10) mMgl1 -2pnﬂvn P-(1 -2uR)"R"1p.
By diagonalizing R, it can be shown that

(11) lim{M } = R 1p for o<p< 3 i
nee" A max

where *-.x is the largest eigenvalue of
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the matrix R. The variance of the
estimate can also be forced below any
arbitrary positive limit as n gets large
for ¥ uncorrelated with V; for k¢j.

The optimal filter is a function of
the inverse of R, R-1P (eg. 6). If R is
singular it does not mean, in general,
that there is no solution, simply that it

is not unique. This condition is
frequently encountered when the
interfering noise is periodic, or nearly

periodic. While channel estimation is not
completely possible in such cases, it is
only necessary to estimate the channel
accurately in those frequency bands where
significant interfering energy is present.
Even though the channel estimate may be
considered poor in such a situation, the
noise reduction achievable may be
significant.

Data Generation

If the data is generated as shown in
figure 2, and if the channel is a finite
length all-zero filter, perfect
cancellation can be achieved
estimated linear filter , H '
to G . A more realistic model for data
generation is given in FPigure 3. The
noise cancellation problem is then reduced
to estimating of G;-1G, , see Pigure 4. If
G, and G, can modelled as all- zero
filters, the difficulty in estimating the
optimal filter arises because of the need
to effectively invert G,. In general G
will not be a “"minimum phase" process.
Its inverse will, therefore, have poles
‘outside the unit circle. For the
estimated optimal filter to be stable will
require it to be noncausal and doubly
infinite. If its poles are well away from
the unit circle, the response will be
dominated by rapidly decaying
exponentials. This allows us to
approximate the required doubly infinite
recursively generated filter, with a
finite transversal filter. As tgf zeroes
of G, and the actual poles of G, approach
the unit circle, however, the number of
points which we must allow in the active
interval of the filter to be estimated
grows if we desire to maintain a constant
error, [3]).

noise
if the
converges

Basic Experiments

A white noise generator was used as ¢
primary noise source. Its output was
low-pass filtered to 3.2 KHz and samplec
at a rate of 6.67 KHz. A square wave
generator was used to generate nearly
periodic noise sample. This sample was
made highly non-stationary by varying the
frequency adjustment of the square-wave
generator in a semi-random fashion while
digitizing. These samples were then
concatenated and used as noise sources for
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both synthetic and acoustically recorded
experiments.

Four FIR channel filters were used in
order to analyze the performance of the
noise cancellation. A low-pass filter
with its cutoff frequency at approximately
1500 Hz and a triple band-pass filter were
created. Two room-channel estimates were
made from actual measurements of a room's
response in order to simulate, digitally,
an actual room [4].

Synthetic Experiments

Por the initial experiments digitally
recorded speech signals were added to the
channel filtered noise segments and used
as the noisy signals applied to the ANC
algorithm. The corresponding unfiltered
noise segments were used as the noise
reference input signals. When white
Gaussian noise was used as the interfering
noise, accurate channel estimates were
obtained,(H converged to G;) for both-
low-pass and multi-band-pass channels.
When the highly correlated, nearly
periodic noise samples were used, the
channel estimates did not converge to the
known channels, but essentially complete
noise cancellation still occurred.

Room Simulations

Using the measured room
responses, the degree of cancellation
possible in a hard-walled room about
fifteen feet square was determined. 1In
the first experiment, the original noise
signal was used as the reference
noise(G,=I), and one of the room channel
tilte:eé signals was used as the noisy
signal. While the original room channel
estimates were 4096 points 1long, the
adaptive filter was constrained to a
length of 3000 points. An adaption
time-constant of approximately 0.4 seconds
was specified. Noise reduction of -25 4B
was measured for this experiment.

impulse

In the second experiment, the
reference noise was generated by
convolving the white noise with one of the
room transfer functions,G; , while the
noise added to the speech was generated by
convolving the white noise through the
other room transfer function,G, . This
data model corresponds to Figure 3. Again
3000 points were specified for the
adaptive filter's length, half of them
before t=f. The resulting noise reduction
measured was -12 dB.

Acoustically Recorded Experiments

Two similar experiments were
performed in an actual acoustic
environment. The digitized noise sources

were played through a single multi-element




BOSE loudspeaker and digitally recorded
through two separate SONY ECM-270
microphones placed at the same locations
in the hard-walled room.

First a single channel room
estimation experiment was performed . The
reference noise was picked up by directly
digitizing the speaker signal (G,=I). The
acoustically added speech plus noise
signal was simultaneously recorded. The
noise reduction achieved in this
experiment was -24 dB.

Many experiments were performed where
both signals were acoustically recorded.
Using this data the optimal filter was
estimated using both block and adaptive
analysis. The results of these
experiments for various filter lengths are
compared in Table 1.

Observations on Results

Examination of the adaptive filter's
impul se responses for the synthetic
experiments showed that their estimates of
the channels were excellent in frequency
bands where significant noise energy was
present, and very poor where no noise was
present. This was not unexpected, since
the adaptive filter's impulse response is
a linear combination of previous reference
noise sample vectors. For periodic noise
the optimal filter was not unique ¢
however the noise reduction was as good as
that achieved when a white noise source
was employed.

A comparison of the results obtained
from synthetic and actual rooms (-25 4B
vs. =24 dB in the single channel case,
and -12 dB vs. -10.5 dB for the two
channel case) indicates that the
assumption that a room can be modelled as
a linear, stationary channel appears
valid. The results also show that
spatially distributed noise sources, such
as multi-element loudspeakers, do not
cause of great deal degradation in
performance. The comparisons of filter
length verses noise reduction show
relative performance 1losses caused by
filter truncation. They are applicable to
a single, hard-walled room about fifteen
feet square, and ought not to be
considered universally attainable levels.
The absolute noise reduction obtainable
for a given filter length is extremely
dependent upon the physical environment
where the process is being employed.

The comparisons of the ANC approach
and the global block analysis showed that

the adaptive procedure consistently
pecrformed better due to the
nonstationarity of the noise. The block

analysis was not developed for
nonstationary data and attempted to

—— e ———

minimize the total output energy. Also
Levinson's recursicn blew up when trying’
to compute a 30800 point filter.
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Filter
Length Block Adaptive
10 0 -2
100 -3 -3.5
400 -4 -4.5
700 -5 -6.0
1500 -6.5 -8.0
3000 -3 -10.5

TABLE 1
Filter Length vs. Noise Reduction in dB.

«3ia




{
;
1 N SIGNAL
g : SOURCE %
£ » X %
S——( [ )— SQ) S g
bpgice “Tu Esimare NOISE }
g SOURCE : st
| ey e g
: NOISE V E
s -. REFERENCE : :
Li t Figure 4 EQUIVALENT DATA GENCRATION MODEL
§ Figure 1 NOISE CANCELLING MODEL i
SIGNAL ;
SOURCE %
X |
NOISE f
SOURCE ,%
v !
Figure 2 BASIC .DATA GENERATION MODEL
SIGNAL F
SOURCE %
X .’
I
. |
; SOURCE G, ——-—% |
{‘ Vv
; Figure 3 REALISTIC DATA GENERATION MODEL

-32-




P —————

RANK-ORDER SPEECH CLASSIFICATION ALGORITHM
(RASCAL)

Benjamin V. Cox !

LaMar K. Timothy

December 1978

To be presented at ICASSP-79
April 2-4, 1979
Washington, D.C.

=33~




RANK -ORDER SPEECH CLASSIFICATION ALGORITHM®

(RASCAL)

Benjamin V. Cox

Sperry Univac, ASD, Salt Lake City, Utah

LaMar K. Timothy

University of Utah and Sperry Univac, ASD, Salt Lake City, Utah

ABSTRACT

This paper describes a theoretical and experimental
investigation for detecting the presence of speech in wideband
noise. A robust algorithm for making the silence-voiced-
unvoiced decision is described. This algorithm is based cn a
nonparametric rank-order statistical signal-deteci..un scheme
that does not require a training set of data and maintains a
constant false-alarm rate for a broad class of noise inputs
corresponding to a single decision threshold. The
nonparametric rank-order decision procedure is the muitiple
use of the two-sample Savage T statistic. The performance of
this detector is evaiuated and compared to that obtained by
manually classifying twenty recorded utterances with 39, 30,
20, 10. and O decibe! signal-to-noise ratios. In limited testing,
the average probability of misclassification is less than 5
percent, 12 percent, and 55 percent for signai-to-noise ratios of
39, 20. and O decibels respectively

INTRODUCTION

The fundamental problem n many speech communication
and understanding systems is the search for a decigsion
procedure that will classify speech in a noisy environment as

iced, iced, or sil (noise alone). For several years,
the notable advances in narrowband vocoders have motivated
investigation into the theoretical aspects of robust speech
classification algorithms that will effectively operate in adverse
noise environments.

A number of papers and reports have been published
describing the theory and techniques for making the voiced-
unvoiced-silence (V-UV-S) classification (1]. however, very few
papers have dealt with the problem of developing effective
algorithms for real noise environments. In most of these
papers, the detection of speech in background noise was
conducted in a realtively noise-free environment under ideal
laboratory acoustic recording conditions. The deciswon
procedure that has enjoyed the widest acceptance is the pattern
recognition spproach of Atal and Rabiner [2). This technique
has been modified by various investigations (3]. The pattern
recognition approach to the V-UV-S classification has
usefuiness for many speech processing system applications.
However, it does not address the robustness issue in a
communication sense since the technique requires a training
sat of data and will operate without degradation in performance
only for a particular communication channel.

McAulay (4] has suggested an algorithm for detecting
speech in an airborne command post noise environment, but it

“Partislly supported by DARPA, Information Processing Branch,
contract NOO173-77-C-0041 and monitored by NRL.

requires a large amount of signal processing, a speech-free
interval to determine noise detection thresholds, and has not as
yet been extensively tested.

The V-UV-S decision is a difficult problem in real noise
environments; there is a need for continued research on the
thecry, techniques, and devices in this area (5].

In the research described here, a nonparametric rank-order
statistical decision procedure that is theoretically recognized as
robust in a communication sense has been formulated and
investigated with a manually classified speech data base. It is
theoretically robust in the communication sense since it has the
desirable property of maintaining a constant false-alarm rate
(CFAR) for a wide variety of noise distributions. The decision
threshold s set independent of signal-to-noise ratio [6).

The detection performance for the Savage two-sample
nonparametric rank-order test for speech signals in wideband
noise s presented in this paper. A simple version of the
problem 18 chosen in order to make a rigorous analysis possible,
to evaluate the applicability of nonparametric procedures to V-
UV-S classification, and to gain clarity.

Although this detection approach is new to speech
processing. t s a mature statistical discipline. The
nonparametric detection review paper by Thomas (7] indicates
that a bibliography published in 1962 gives more than 3000
references. The application and analysis of nonp ic
detections historically has been confined to nonengineering
problems. an engineering text has only recently been published
[8).

Some specific advantages of nonparametric statistics
applied to speech detection are: (1) It maintains a constant
false-alarm rate with a fixed threshold for large classes of noise
distributions. (2) It does not require statistical information
about either the signal or the background noise (does not
require a training set of data) to set a decision threshold. (3)
Performance for signals in non-Gaussian noise may often
surpass that of detection optimized against Gaussian noise. (4)
it will operate where the noise statistics are nonstationary or
change from one application to another. {5) It can be digitaily
implemented

DESCRIPTION OF THE ALGORTIHM

System Description
The system operates in the following manner: The speech

signal is low-pass filtered to 3.2 kHz (telephone bandwiith),
sampled at a 6.67-kHz rate, and high-pass filtered at
approximately 200 Hz to remove any dc or low-frequency hum.
The output from the high-pass filter is formulated into blocks of
100 samples (16 milliseconds of speech data). Each hlock of
speech is then applied to four subband digitai filters. The time
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series output of each filter is labeled, pooled, and rank ordered.
The rank-order values are then passed to the detector or
classifier algorithm. Figure 1 shows a block diagram of the
detection algorithm,

The filter subband partitioning is based on the work of
Crochiene [9]. The important property achieved by this filter
bank is that the sum of the individuai frequency responses of
the bandpass filters (composite response) lies flat with linear
phase. The design of the subbands is based on perceptual
criterisa. The band-partitioning is such that each subband
contributes equally to the articulation index (Al). The Al
indicates, on the average, the contribution of each part of the
spectrum to the overall perception of the spoken sound. Figure
2 shows the partitioning of the speech spectrum into four
contiguous bands. These filters were designed using
McClellan, Parks. and Rabiner's program [10].

P
To evaluate the applicability of nonparametric rank order
detectors to the V-UV-S classification problem. three
assumptions were made: (1) The spectrum of speech is
different from bandlimited white noise. (2) The noise spectrum
is approximately flat. (3) The amplitude distribution of speech is
approximately Laplacian (11}

p(x)=j2-!-a- oxp(-ﬁ%l Py

where 8 is the rms speech value.

The detector based upon these assumptions operates in the
following manner: The noise spectrum is assumed to be
approximately flat over the telephone band of 200 to 3200 Hz.
This frequency band is analyzed by forming fout contiguous
subbands. The subbands are chosen so that each subband data
block is independent. A two-sample test statistic is used for
each subband data block. The time-sampled data in the
subband being tested forms the first sample, and the remaining
pooled data forms the second sample. The procedure for the
two-sample problem is to combine or pool both samples into a
single ordered sample and then assign ranks (1,2, . . ., N] to
the sample values from the smallest to the largest value,
without regard to the subband source of each value. The
simplest test statistic is the sum of ranks assigned to the values
from one of the subbands. If the sum (test statistic) is too large,
there is some indication that the values from that subband tend
to be larger than the values of the pooled second sample. The
null hypothesis HQ of no difference between subbands may be
rejected if the ranks associated with one sample tend to be
larger than those of the other sample; and the alternate
hypothesis H1 is accepted. Under the assumption that the rank
of any single outcome is equally likely, the probability of any
test statistic can be determined by counting outcomes, knowing
there are N! total permutations. A test statistic for each
subband data block is calculated and compared with a threshold
determined from statistical tables. This decision procedure is
referenced in mathematical literature as simultaneous
statistical inference and is described more fully in (12]. The V-
UV-S decision is a single-sided hypothesis test using the upper
tail of the distribution function.

The detector compares a set of m time data samples from
one of the subbands with pooled data from the other subbands
to determine if the sample amplitude distributions (AD) are the
same or different based on ranks. The form and parameters of
the ADs are unknown. * :he sampie amplitude distributions in
the subbands are statistically similar, to within testing error,
noise only is declared at the output of the detector. If the
sample AD in a subbend with a frequency range below 2000

Hz 1s statistically different from the subbands forming the
pooled sample, then voiced speech is declared at the output of
the detector. If the opposite condition exists, then unvoiced
speech is declared at the output of the detector. The decision
procedure tested is closely related (o the nonparametric
detection procedure using a spectral data concept first
introduced by Woinsky [13).

Test Swutistic

The following description of the Savage test statistic
follows the development presented in Hajek [14). Since the
amplitude distribution of speech is nearly exponential, the
Savage test statistic is selected because it is the optimum rank
statistic for an exponential distribution and 8 scale alternative.
The Savage test statistic has the form

5 N
S-i=£| Ay (2)

whereZ ; is a switching function:

. 1 if the ith rank belongs to the filter output under test

Zi = 0 otherwise
and where e {
Ai=Z T (3)
EN=i+l

which heaviy weighs the ranks near the upper tail in the

critical decision region. Under H the Savage statistic satisfies
E(Sl=m , N=m+n

(4)

o

o8 il
varsis § G-§ 2

Consider the amplitude distribution function F ( +) with
standard deviation 8 and zero mean corresponding to Hp. For
the condition 3)> 830 we have F(x/ 8| )< F(x/ 80 )in
the critical test region of the upper tail Let 8| correspond to
the sample from the subband under test and let 3y correspond
to the pooled population under Hg. |If voiced or unvoicea
speech is present. then 3(>3g, otherwise 3; < 3¢,
Consequently the hypothesis test can be stated as

Ho: Blsao S
H|: 8| > 80

which can be tested with ranks based on the Savage statistic S
and a threshold S@ selected from rank statistics. The
procedure follows.

Under the null hypothesis Hp, select 8 threshold S @ such
that PS < $%) = 1-a where a is the probability of & type
error usually between 0.10 and 0.01. The quantiles of S® are
given in Table X of Hajek [14) for N < 20. It N > 20 a normal
distribution approximation can be used considering Eq. 1 and 2.
Accept Hg it S < S?. Otherwise reject Hy.

Ranking of the data and calculation of S may require an
excessive number of computer manipulations; the procedure
requires that all dats froimt the filters be stored for each data
frame for ranking purposes. This problem can be reduced using
a mixed Savage statistical test (14] which was applied to the
data presented in the following section.
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EXPERIMENTAL RESULTS

_ The nonparametric classifier was tested on the diagnostic
rhyme test (DRT) file tape supplied by Dyna Stat Incorporated
(4]. The additive white noise tape was generated by digitizing
the analog output of an analog noise generator. Both the word
file and the noise file were prefitered with a low-pass filter
having a 3.2 kHz cutoff frequency and were sampled at 6.667
el

Using the software programs described in [15] and the DRT
data file. a controlied DRT word data base with 2dditive white
noise of progressively smaller signal-to-noise ratios: 39, 30,
20, 10, and O dB8 were created and processed by the detector
algorithms. Tests were conducted to evaluate the speech
detector's performance for the five different signal-to-noise
ratios of wideband Gaussian noise. For each clean test word
from the DRT file. a manual analysis was performed on each
15-millisecond interval to classify it as voiced, unvoiced, or
silence based on visual inspection of the acoustic waveform
and a phonetic interpretation of the utterance. Two
independent manual classifications were made on each test
word.

A V-UV-S decision was made by the computer every 15
milliseconds based on a mixed Savage statistic using 100
samples from each filter subband represented in figure 2. The
mixed Savage statistic was formed by averaging the absolute
value of 5 samples forming 20 averaged samples per subband.
The 80 averages from the four subbands were pooled and
ranked.

Error rates were computed by comparing the manual
classification with the detector's classification output. Tabie 1
izes the Il recognition rate as a function of signal-
t0-noise for the simultaneous decision procedure for all 20 test
utterances.

The recognition resuits in Table 1 and spectral analysis of
the DRT background noise indicate that a significant low-
frequency spectral component is present in the backgrourd
noise of the DRT file. Table 1 and the additional test described
in (1] show that as noise is added, the effect is to whiten the
spectrum, and therefore, the misclassification rate decr at
30 dB as compared to 39 dB.

CONCLUSIONS

A theoretical and experimental investigation for detecting
the presence of speech in wideband noise and classifying the
detected utterance as voiced or unvoiced, based on a
nonparametric  statistical detection approach, has been
described. The speech detection technique that was tested is
effective ior detecting speech in wideband noise at a signal-to-
noise ratio from 39 to 0 dB and meets the requirement for
being independent of transmission channel characteristics,
recording conditions, and distribution of the background random
noise. The desirable feature of this detection or classification
scheme is that is requires neither a training set of data nor a
prioni information of the statistical parameters of speech or
background noise
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Table 1.

20-Sampie Recognition Rate for the Simultaneous Decision Procedure

Percent Recognition Silence Voiced Unvoiced
S/N in d8 ¥ 3 20 10 o % 3 20 10 o ¥ Y 20 10 o
Gob = - - - 9T 95 19 s1 28 - - FopiEL e
Sue sl - 100 100 100 100 - 100 100 100 00 - 92 s8 25
Taunt 82 95 95 95 91 9 93 95 82 36 100 100 100 0 O
Nl 23 35 100 100 100 9 wo 8 18 W S0 e e
Boast 46 82 96 89 39 100 100 95 84 58 100 100 67 0 0
Jab 0 % 90 % 90 8 8 10 38 2 7% 100 5 S0 25
Cheat o8 91 95 91 9 88 100 91 91 76 100 8 8 711 37
Satd $7 71 8 100 100 100 100 93 32 4 - - - - -
Unaw 0 7% 100 100 100 100 100 9« 86 17 - - - - -
Weed 100 100 100 100 100 9 95 93 79 45 - - - - -
Deck 78 100 100 100 100 95 82 17 %9 4l 86 3 2 [} 0
Chew 100 :100 100 100 100 93 9% 90 90 S 86 8 8 71 4
Thong 100 \loo 100 100 100 9% 95 8 8 22 SRR S B s
Keep 49 100 100 100 100 9% 9% 88 71 N 100 100 6 3 0
Got 86 90 95 86 86 91 8 70 61 M 100 100 100 [} 0
Dank 91 100 100 100 100 92 8 78 0 28 o LR
Shoes 8 100 - 100 10O 100 100 - 100 77 100 100 - 8 %0
Shag 13 & 100 100 100 % 97 8 8 &2 100 100 91 6 27
Pool 63 88 100 100 100 97 97 95 8 SI - - - - .
Dip 59 91 9% 100 100 v 87 83 8 2 - - - - -
Average
Percent 68 90 97 97 N 95 96 87 2 as 9 91 19 47 20
Recognition
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ABSTRACT

Linear predictive coding (LPC) has been suc-
cessfully applied to the encoding of speech and
other time series. It has been widely observed,
however, that the performance of an LPC algorithm
deteriorates rapidly in the presence of background
noise. In this paper, we describe and discuss one
approach to the identification of a time series
corrupted by additive white noise.

A common approach to this problem is to pre-
filter the noisy time series, and then to apply an
estimation algorithm which treats the time series
as if it were noise-free. We describe an alterna-
tive approach which involves modifying the time-
series model at the outset to account for the
presence of noise. An estimation algorithm is
then developed for this modified model. We dis-
cuss the development of the model, the estimation
algorithm, and some representative experimental
results.

INTRODUCTION

Linear Predictive Coding (LPC) has been
widely and successfully applied to the encoding
and processing of speech waveforms and other time
series. Most of the initial demonstrations of LPC
were conducted using high-quality and relatively
noise-free signals, however. It has recently
become clear that background noise and other per-
turbations can cause a serious degradation in the
performance of LPC algorithms (1, 2). In speech
processing, for example, the presence of noise can
adversely affect silence detection, voiced/unvoiced
determination, pitch period calculation, and iden-
tification of the LP coefficients. The work dis-
cussed in this paper deals only with the problem of
coefficient identification, and is applicable to
any time series which can be modeled as an all-pole
or autoregressive (AR) process perturbed by addi-
tive wvhite noise. We make the further simplifying
assumption that the order of the process is known;
thus, only the unknown coefficients of the differ-
ence equation defining the AR process must be esti-
aated from the observed data.

Several schemes have been developed to deal
with the effects of noise on LPC estimation algo-
rithms (1, 3, 4). The approach to noisy time-
series analysis which we discuss in this paper in-
volves a modification of the process model at the

- S — g

outset to account for the effects of additive white
noise. We show that the addition of white noise to
an AR(q) process (an all-pole process with q poles)
results in a new process which is an autoregres-
sive moving-average (ARMA) process with q poles

and q zeroes. Furthermore, the poles of the new
ARMA (q, q) process are identical to the poles of
the original AR(q) process, a fact which greatly
simplifies the estimation process. By modifying
the model in this way, we transform the problem

of estimating the parameters of an AR process in
the presence of noise into a problem of estimating
the parameters of an ARMA process vhich has the
same poles or AR coefficients as the original pro-
cess.

Optimal estimation of the parameters of an
ARMA process is much more difficult than estimat-
ing the parameters of an AR process. Our objec-
tive in this paper is to determine whether there
is any performance advantage to be gained using
the approach described above, and we do not con-
cern ourselves with computational efficiency per
se. If this method were to be implemented, it
would no doubt have to be modified to increase its
speed.

Estimation of the parameters of an ARMA pro-
cess has been extensively discussed in the litera-
ture (5, 6, 7). We describe an algoritha devel-
oped by Anderson (7) for conditional maximum-
likelihood estimation using a version of the
Newton-Raphson method.

Finally, we present the results of a number
of experiments conducted using simulated time-
series data. We compare the estimates obtained
using the Newton-Raphson method with those ob-
tained by applying the standard autocorrelation
method of LPC estimation to both the unmodified
noisy time series and to a Wiener-filtered version
of this noisy time series. We also include re-
sults obtained by solving the "shifted" Yule-
Walker equations (8).

THE MODEL
In this section, we give a very brief devel-
opment of the model which results when white noise
is added to an AR process. For more details, see
(9) or (10).

We sssume that the desired signal process
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s(k) 1s a stationary AR(q) process of known order
q described by

q
} a()s(k - 1) = e(k), )
1=0

where e¢(k) is a seq of ind dent, identi-

cally-distributed caussisn random variables with
mean zero and variance of. We further assume that
a(0) = 1 and that q > 0. This signal process is
contaminated by a sequence n(k) of independent,
identically-distributed Gaussian random variables
with mean zero and variance og to form the observ-
able sequence

x(k) = s(k) + n(k). (2)

It can be shown (8, 9) that x(k) satisfies
the relationship

q q
] ax(x -1) = [ v(vik -~ 3), 3)
i=0 i=0

vhere b(0) = 1 and v(k) is a sequence of indepen-
dent, identically-distributed Gaussjian random vari-
ables with mean zero and variance og. Thus, the
observed noisy process x(k) can be viewed as an
ARMA (q, q) process with AR coefficients

{a(1)}4.;» MA coefficients (b(J)E_l. and driving-
sequence variance 0y. This new model contains

2q + 1 parameters compared with q + 2 for the
original model.

Upon comparing (1) and (3), we see that the
AR coefficients of the new ARMA model are identi-
cal to those of the desired signal process s(k).
Hence, after estimating the parameters of the ARMA
process, we can simply discard the MA estimates
and retain the AR estimates. This result rests
on the assumption that the additive noise is white.
If it is not, a similar result can be established
but the AR parameters will no longer be the same.

PARAMETER ESTIMATION

We showed in the previous section that esti-
mation of the parameters of an AR process contami-
nated by additive white noise can be accomplished
by estimating the parameters of an associated ARMA
process. We have adopted and implemented an ARMA
estimation algorithm of Anderson (7) for this pur-
pose, and we briefly describe this algorithm in
this section.

Of the several methods described in (7), the
one we selected is the so-called time-domain
Newton-Raphson method. To begin, we define the
N x N matrix

o o
- (4)
Iy 9

vhere Iy_y is the (N - k) x (N - k) identity ma-
trix. Further, define column vcctor* z = [x(0)...
x(N - 1))T and v = (v(0)...v(N - 1)]T.” Then
1Ex = [0...0 x(0)...x(¥ - 1 - ®))T.

kk

Using the matrices ;‘. and assuming that

x(k) = v(k) = 0 for k < 0, we can vrite (3) in
matrix form

Ax=By (5)
where
- i
A= J a@) L (6)
1=0
and
3 @
B= I b(p LY. 1))
3=0

The conditional log likelihood function (condi-
tioned upon the inital values assumed for x(k))
can now be written

2

tn(f) = - !2‘- tn(2r) - % ln(av

)+ ta lal - ta 3]

-5 AT(BT)-1 lax ®

20 T
v

The conditional maximum ljikelihood estimates
for {a(1)}{a;, {b(j)lq_l. and oy can be obtained
in principle by diffefentiating (8) with respect
to each of these parameters, equating the results
to zero, and solving the resulting set of simul-
taneous equations. Unfortunately, these equations
are nonlinear in the parameters and cannot be
solved directly. Thus, we must resort to iterative
methods of solution.

The estimation of o2 can be decoupled from
the estimation of the .(13' and b(j). Specifically,
1f we use (5) to define

ve2lax, ©)
then
21,7
o, "jYL Y (10)

To estimate the a(i) and b(j), we dffin
a=[a1) ... a(@)]T, b = [b(1) ... b(q)]", and
@ = [aT; bT)T. The estimate of § is obtained
iteratively using the equation

-1
LIPS T T an
vhere g4 is the gradient vector and Ry is a matrix
whose elements will be given below. To use (11),
an initial value 6, is chosen, R, and are cal-
culated, and these values are then used to obtain
an updated estimate 6;. The process is then

repeated iteratively until some stopping criterion
is satisfied.

It is convenient to express R and g in the
partitioned forms

: 11} (
Re 12)
F [a’ :]

£y | (13)
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The vectors w and u are q * 1 column vectors whose
jth and mth elements are, respectively,

vy =iy sy a4)
and %
T

P
[“]I. s £

)
v

®aly as)

vhere v is computed from the observed data vector
x by (9). The elements of ¢, Q, and y are given by

(01gy = 17 !T(-'-T)-l(.‘:.r)j 'ty (16)
v

o), =% _v_’(n")- (_1})1 =aty, an

W =% !T[AT]-I[LT]. "aly. a®
v

To obtain Ry and g4, we simply substitute the
parameters from the ith estimate 6; into (12)-(18).
For a detailed discussion of the computations
involved, see (8].

EXPERIMENTAL RESULTS

We have conducted extensive tests of the
time-domain Newton-Raphson algorithm described in
the previous section, and have compared its per-
formance to that of several other estimators. In
this section, we briefly summarize some represen-
tative results and discuss the conclusions we have
dravn from these results. A discussion of results
obtained using an algorithm developed by Steiglitz
i11] appears elsevhere in these proceedings ([12],
and a much more extensive discussion of all our
results appears in [8].

Although we have conducted tests on higher-
order processes, we restrict our attention here to
a first-order AR process contaminated by additive
vhite noise. For definiteness, we took the single
AR parsmeter to be 0.5. As an initial test of the
performance of the Newton-Raphson algerithm we
performed, for a number of 256-point frames of
data, a straightforward search in (a, b) parameter
space to locate that point which minimized the
unconditional sum of squared residuals (see (10),
Chapter 7). The Newton-Raphson algorithm was
applied to the same data, and its estimates of a
and b were compared with the values obtained using
the search procedure. In all cases in which the
Newton-Raphson procedure converged, the results
agreed very closely. These results confirm that
when poor estimates are obtained using the NR
method, it is almost always the case that these
poor estimates really do minimisze the sum of the
squared residuals. Thus, the weakness is not in
the MR algorithm per se, but is inherent in the
underlying least-squares spproach to estimation.

In most experiments using the NR algorithm,

we used the true parameter values as the initial
values. We did this on purpose in order to avoid
extensive discussion of this issue. The primary
effect of using other reasonable initial guesses
should be a modest increase in the rate of failure
to converge, and does not seriously affect our
conclusions. This is borne out by some results
obtained when we did not know the true values for
the moving-average parameters and therefore were
forced to use other starting values.

Estimates of the AR parameter a were obtained
for 518 frames, each containing 256 points of data,
for each of six signal-to-noise ratios. The meth-
ods used to obtain these estimates were the follow-
ing:

1. The time-domain Newton-Raphson method
described above.

2. The standard autocorrelation method of
LPC.

3. Solution of the shifted Yule-Walker equa-
tions to account for the moving-average
portion of the process.

4. Wiener filtering, assuming knowledge of
the signal and noise spectra, followed
by LPC estimation. In practice, these
spectra are not known, and in fact are
to be estimated, but this approach pro-
vides an indication of what can be
achieved.

The results obtained using these four meth-
ods were averaged over the 518 frames of data, and
these average estimates are plotted in Fig. 1. In
the case of the NR method, the average was taken
only over those frames for which convergence
occurred (515 at O dB, 214 at -10 dB, 518 in all
other cases). In terms of these average results,
it is clear that the NR and shifted Yule-Walker
methods are superior to the other methods. In
particular, the SNR threshold below which the
estimate becomes very poor is roughly 14 dB lower
for the NR method than for the uncorrected LPC
method.

Looking only at the averages can be somewhat
misleading, however. A more complete picture is
obtained by looking at the variances of the
estimates, and here some of the advantage of the
NR algorithm is lost. The variance of the NR esti-
mate is appreciably larger than that of the LPC
estimate, as is shown in Fig. 2. Thus, although
the NR method is superior on the average, the LPC
estimate will actually be better for a significant
number of individual frames.

SUMMARY

In this paper, we have shown that an AR (all-
pole) process contaminated by additive white noise
can be modeled as an ARMA (pole-zero) process whose
poles are identical to those of the original AR
process. Thus, the problem of estimating the
parameters of a noisy AR process can be transformed
into one of estimating the parameters of an ARMA
process, unfortunately a msuch harder problem.
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Ve implemented an ARMA estimation algorithm
using the Newton-Raphson approach, and then applied
this algorithm to a large amount of data from a
synthetic noisy AR (1) process. This procedure
yielded considerably better results on the average
than did an unmodified LPC algorithm, but this
advantage is qualified by the fact that the vari-
ance of the NR estimate is greater than that of
the LPC estimate.
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ABSTRACT

Steiglitz (2) has recently described an
algorithm for estimating the parameters of an
autoregressive-moving-average (ARMA) process.

This algorithm has application, for example, to the
problem of determining the poles and zeroes of the
vocal-tract transfer function.

In this paper, we report and discuss the
results of a number of simulations conducted using
the Steiglitz algorithm. The bulk of the experi-
ments involved driving the ten-pole, two-zero
filter described in (2) with a single pulse, with
a short pulse train, and with samples of white
Gaussian noise. In each of these cases, we eval-
uated the effects of such processing options as
wvindowing, preemphasis, and cepstral-domain filter-
ing. We also discuss and compare results obtained
by applying the Steiglitz algorithm and a Newton-
Raphson conditional maximum-likelihood algorithm
to a first-order process.

INTRODUCTION

Steiglitz and McBride (1) propose a system
identification procedure in which the z-domain
transfer function of the unknown system is B(z)/
A(z). B(z) and A(z) are polynomials given by

q
A = | a2, a(o) = 1.0, Q)
1=0

P
B(z) = ] bz, b(0) = 1.0. )
1=0

The polynomial A(z) determines the pole locations
of the model and is, equivalently, the autofegres-
sive (AR) operator. The zero locations are deter-
mined by B(z), the moving-average (MA) operator.
Thus, 1f the driving sequence v(k) is a white
noise sequence, the response x(k) is an ARMA pro-
cess. Assuming that the input V(z) and output
X(z) are known, the model's response is U(z) =
[B(2)/A(2)]V(2). The error is then given by

E(z) = U(s) - X(2). After linearizing the model,
Steiglits and McBride arrive at an iterative pro-
cedure vhich estimates the coefficients a(l), ...,
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a(q), b(0), ..., b(p).

In (2), Steiglitz applies this method to data
obtained from a system in which the input V(z) is
unknown. The data x(k) are assumed to reslut from
driving the unknown system with an impulse.
Steiglitz applies this method to a ten-pole, two-
zero "unknown" system in which the input v(k) is
actually an impulse train, simulating voiced
speech. Because the data x(k) are assumed to
result from an impulsive input, Steiglitz proposes
that x(k) be modified prior to analysis to improve
that assumption. Preemphasis, windowing, and
cepstral-domain operations are suggested toward
that end.

EXPERIMENTAL RESULTS

The application of this algorithm to data
generated using white noise as the input to the
ten-pole, two-zero model used by Steiglitz is
reported in (3). This represents the situation
usually encountered in ARMA model estimation. For
comparison, the algorithm is also applied to data
generated with inputs of a single impulse and an
impulse train. The various modifications to x(k)
proposed by Steiglitz are performed. The result-
ing sequence is analyzed to obtain estimates of the
ARMA coefficients. Results are reported here on
those modifications which produced estimates of |
the ARMA coefficients having the smallest mean i
square error wvhen compared to the coefficients
used to generate the data.

Figure 1 shows the spectrum (in dB) of the
system to be identified. Using an input of a
single impulse, the resulting data sequence x(k)
is shown in Fig. 2. The best estimates of the
ARMA coefficients are obtained by applying the
algorithm directly to x(k). The spectrum of the
estimated model after one iteration is shown in
Fig. 3. There is essentially no error in the
estimate.

The next caie to be discussed is the analy- |
sis of data gemerited using an impulse train as
the input. The iapulees occur every 100 sample {
points. The resulting output is shown in Fig. 4. |
In this case, the following modifications are made i
to the data x(k): |
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1. Hamming window x(k).

2. Window the complex cepstrum of x(k).

3. Transform the resulting cepstral
sequence to obtain the time domain
sequence x‘(k).

After windowing x(k) in step 1 to obtain
w(k) * x(k), the data are transformed using an
N-point DFT. Prior to computing the complex
cepstrum, the signal is forced to have zero-phase.
The complex logarithm thus becomes

Rellog X(1)} = § loa{[Re x())? + Il[X(t)]z}(E))
Im{log X(2)} = O, (4)

where X(2) is the DFT of w(k) * x(k). After the
windowing operations to be performed on the cep-
strum, the zero-phase assumption yields the same
results as those that would be obtained using the
actual phase of X(2). The imposition of zero
phase avoids the necessity of phase unwrapping.
The complex cepstrum x(k) of this zero-phase sig-
nal is found by performing another DFT on the
complex logarithm.

Two operations are now performed on x(k).
First, let i.P(k) = u(k) * x(k), where

1, k=0
N
u(k) = ¢ 2, k=1, cees g

ol k-g‘* p esey W

The cepstrum is now causal, and the corresponding
time-domain signal has a magnitude spectrum iden-
tical to that of w(k) °* x(k). The second opera-
tion performed on x(k) is to zero the portion of
the cepstrum having the pitch spike associated
with the periodic nature of x(k). The cepstral
signal %x..(k) resulting from these two procedures
is transformed back to the time-domain signal

(k). The cepstral processing has achieved two
goals:
1. (k) 1s a minimum phase sequence.
2. The periodic nature of x(k) is sup-

pressed.

The assumption of an impulsive input is more nearly
valid for (k) than for x(k). Analysis to deter-
mine the coefficients is performed on x-,(k),
which is shown in Fig. 5.

It wvas found that the Hamming window step
was necessary to obtain a convergent, stable fil-
ter estimate. Preemphasis was not performed on
either x(k) or (k), as this tended to degrade
the coefficient estimates somevhat. The spectrum
of the estimate after two iterations is shown in
n.i : and is quite good, confirming the results
in (2).

The last case to be considered is for data
generated when the input to the system is an
approximately white noise sequence. The resulting
output is shown in Fig. 7. The best estimates in
this case were obtained by analyzing x(k) directly.
Unlike the impulse excited case, however, the
estimate is poor. Figure 8 shows the spectrum of
the estimate after two iterations. Further itera-
tions result in progressively narrower and higher
spectral peaks. The estimate often becomes un-
stable. The algorithm is no longer achieving the
excellent results found in the other two cases.

Because the tenth order AR operator is likely
to tax any estimation algorithm, the algorithm
developed by Steiglitz was applied to a single-pole
system (q = 1, p = 0), excited by white noise. The
single denominator coefficient, a(l), was 0.5 for
this test. The estimate for a(l) from the Steig-
litz algorithm is compared to that obtained from a
Newton-Raphson (NR) implementation of a maximum
likelihood ARMA estimation procedure (4). The
results for ten iterations of one frame of data are
presented in Table 1. The initial guess for a(l)
in both algorithms is 0.5, the actual value of the
coefficient used to generate the data. Using this
as the initial guess removes the uncertainty about
an initial guess from the test. From Table 1, we
see that after the first iteration, the NR estimate
does not change in at least the five most signifi-
cant figures. The Steiglitz estimate, however,
varies considerably from iteration to iteration.
The estimate at iterations 2, 3, and 4 is unstable.
Convergence does occur in later iterations, but to
a value indicating the pole is close to the unit
circle. This results in a narrow, high peak in
the spectrum, characteristic of the estimate in
the tenth order case. In addition, computations
using the Steiglitz algorithm requiré the use of
double precision arithmetic, even in the previous
successful cases. The NR method does not require
double precision arithmetic for successful param-
eter estimation.

CONCLUSION

The results of the tests performed here con-
firm that the parameter estimation algorithm pro-
posed by Steiglitz (2) produces good results for
the impulse- and impulse-train-excited cases. Care
must be taken, however, in choosing modifications
to x(k). The performance of the algorithm in the
noise-excited case is poor, even for a first-order
process. The algorithm does not appear to be
applicable to the problem of estimating the param-
eters of a noise-excited ARMA process.
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Table 1. Comparison of the Steiglitz and NR
estimates for a(l) of an AR(1l) process.
Iteration Steiglitz NR
1 -.05109 .49538
2 1.41350 .49538
3 -1.22940 .49538
4 -5.58270 .49538
-.24169 .49538
6 .89261 .49538
7 .97296 .49538
8 .99496 .49538
9 .99732 .49538
10 .99728 .49538
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ABSTRACT

Modification of the rate of
occurrence of acoustic events without
altering frequency content, and
modification of pitch without changing
time scale are presented as equivalent

problems. While the short-time Fourier
transform has been used to solve the rate
modification problem, it is not a natural
tool. It lacks the scaling property of
the Fourier transform. The constant-Q-
transform, on the other hand, exhibits
this property. A more natural rate/pitch
modification system using the constant-Q
transform is presented which performs well
with rate/pitch changes by factors of
between one-third and three.

INTRODUCTION

The possibility of modifying the rate
at which speech is articulated has
prompted a variety of efforts, ranging
from simple time-base scaling and the
excision or insertion of waveform segments
to the more successful and complete
approach used recently by Portnoff (1)
involving time scaling of the short-time
spectrum. These efforts have been
hindered, in part, by the difficulty in
satisfactorily defining what is meant by
rate-changed speech. As Portnoff points
out, this difficulty results from the
ambiguity in classifying aural events as
having either temporal or harmonic
significance. Clearly, aspects of a
signal which appear to manifest themselves
harmonically should be preserved in rate
compression or expansion of a signal,
while characteristics which are perceived
in time ought to be subject to
modification. The short-time Fourier
transform, which maps signals into a
two-dimensional space, separates the time
and frequency content of a signal based on
the assumption that variations which occur
over intervals greater than the constant
time resolution of the analysis window

will be classified as temporal events,
while other characteristics must be
measured along the frequency axis. Hence,

while constant bandwidth analysis has
produced very good speech compression and

expansion results, it requires the making
of signal-dependent assumptions about the
time-frequency boundary. Evidence
suggests that a constant bandwidth
analysis criterion is consistent with
neither the human auditory system in
general nor with correct formulation of
the rate compression/expansion problem in
particular. For example, recent automatic
phoneme recognition work by Searle (2]
suggests that information by which various
burst and stop phonemes are recognized
occurs with time resolutions finer than 20
msec, and probably as fine as 5 to 10
msec. The auditory system, on the other
hand, hears tones with fundamentals longer
than 20 msec. Of course, the reason that
the ear perceives stops and bursts as
temporal events, while correctly analyzing
50 hz tones is that it is not a constant
bandwidth device, but rather, constant-Q.
Thus, the constant-Q transform, which maps
signals into a two~dimensional space where
time and frequency resolutions are
dependent on analysis frequency, provides
a more natural tool for performing
independent modifications to temporal or
harmonic aspects of signals. The problem,
then, of defining what portions of a
signal ought to be compressed or expanded
in a speech rate change system is at least
partially solved by requiring the
time-frequency boundary to be a variable
related to the ear's frequency-dependent
boundary.

CONSTANT-Q ANALYSIS AND SYNTHESIS

The continuous formulation of a
Fourier-like transformation which has a
frequency-varying time-frequency boundary
is given as

Fluet) = [ £COR((t-T) e T ar (1)

where the analysis window function, h, |is
defined to have finite non-zero extent (as
in the Hann, Hamming, Bartlet and Blackman
windows, for example) . If by the
single-argument functions, F and H, the
Fourier integral transforms of f and h are
designated, this constant-Q transform may
be written in the form,

el
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Flusv-w) = Flu)H((v-w)/w)/ |u| (2)

where v is the frequency variable of the
Pourier integral. Clearly, the analysis
behaves for any analysis frequency, w , as
a bandpass filter whose frequency
resolution is directly proportional to its
center frequency, w ’ whose time
resolution is inversely proportional to
w » and whose output is frequency-shifted
to zero. Because the ratio of analysis
frequency to frequency resolution is a
constant, this integral transform has been
referred to as a constant-Q transform. By
appropriately choosing the width and the
shape of the analysis window, h, the time
and frequency resolution of the constant-Q
transform can be made to vary in a way
which closely resembles the analysis
performed by the human ear.

Although the time-frequency
separation of data in the constant-Q
spectral domain can be made to simulate
that in the ear-domain, (1) is not useful
in performing independent frequency or
time scaling
synthesis expression. The filterbank
analogy to constant-Q analysis, explained
above, suggests a method of synthesis. If
the spectral domain is thought of as
equivalent to the output of a contiguous
bank of shifted, scaled lowpass filters,
the possibility that a simple
recombination of the various bandpass
signals will lead back to the original
signal seems obvious. The correct
synthesis expression is, in fact, such an
algorithm.

£(t) = k [ Flo,t)ed®t ay (3)

In this expression k is a constant which
is determined by the nature of the
analysis window, and which, in practice,
is most easily determined empirically.
That this analog to constant bandwidth FBS
synthesis is but one of a family of
possible synthesis forms has been pointed
out by Kajiya [(3).

SAMPLING THE CONSTANT-Q SPECTRAL DOMAIN

Implementation of (1) and (3) on a
digital computer requires the proper
sampling of the spectral domain. Schemes
by which a constant bandwidth spectral
domain may be sampled without loss of
information are 1limited by the analysis
window, which imposes time and frequency
resolutions on the spectral information.
Specifically, these time and frequency
resolutions may be defined as the
respective intervals over which the window
function and its Fourier transform are
*significant®, The ambiguity 1in this
definition is removed by defining the time

without a corresponding

resolution, To, as the non-zero extent of
h, and the frequency resolution, F_, as
the extent of the principal interval
around zero where H 1is positive. The
scaling property of the Fourier integral
transform guarantees that the product of
the time and frequency resolutions will be
a constant. Thus,

where B, is a constant whose value is a
consequence of the choice of the window
function, h, and of the definitions of F,_
and T_. Combined with the Nyquist
theorem, this information is sufficient to
permit sampling of the constant bandwidth
spectral domain without loss of
information. In particular, the density
of time samples must be greater than F ,
and the density of frequency samples must
be greater than T -

The extension of the above to the
problem of sampling the constant-Q
spectral domain is complicated by the
dependence of T_ and F_ on frequency. The
solution to this problem is enabled by the
following formalization. First, define F
to be the more-limited principal extent
over which H has values within 3 db of its
maximum value, and let B, represent the
constant product of T and F, .

B, = I‘T. (5)
Then
Q = f/F (6)
From this the time and frequency
resolution may be determined as
T, (£) = B, Q/f (7)
and
E, (f) = B, f/B,Q (8)

Equations 7 and 8, combined with the
Nyquist theorem, give rise to lower bounds
on the instantaneous sampling densities
along the frequency and time axes
respectively. In general, {f At(f) and
Af(E) are the instantaneous sampling
intervals at a frequency, f, then

-1
At(f) < Fyolf) 9)
and
-1
Af(f) < T (f) (10)
Utilizing these limits and the filterbank
formulation of the constant-Q transform
suggested in (2), constant-Q analysis can

be implemented in discrete form using fast
convolution .
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TEMPORAL AND HARMONIC SCALING

The approach to rate changes taken in
the work reported here utilizes a property
of the constant-Q transform not shared by
the short-time Fourier transform. This
property, the time scaling property,
follows directly from (1) by substituting
a time-scaled function, f(at), for f(t)
and renaming the result.

F (wt) = [ fa)h((t-Dw) €T ac (11)

Then, with a change of varlablis,

© (12)

Fi(wt) = [ £(r)h((at=1)w/a) €397/2 ar/ja]
or o

F,(w,t) = F(w/3,at)/ |a| (13)

Thus, the constant-Q time scaling

property, given the relationship of (1),
is

cQr
> F(w/a,at)/ |a| (14)

f(at) <

+ This property can be used to relate a

change of scale of either the temporal or
the harmonic spectral information to a
change of scale of both the time domain
signal and the other spectral axis.
Assume, for example, the possibility of
scaling the temporal axis of the
constant-Q spectrum by a. This would give

Fa(wst) = F(w,at) (15)

If the signal, £ (t), resulting from
substituting F, (w,t) into (3) were time
scaled by 1/a, the result, using the
constant-Q time scaling property would be

cor

F, (u,t) = |a|F, (aw,t/a)< > £, (t/a) (16)

F,(w,t) = | a|F(awt) (17)

Thus, as illustrated in figure 1, a
harmonically scaled constant-Q spectral
domain is related to a temporally scaled
constant-Q spectral domain by a change of
the signal's time scale.

Scale
Harmonic
Axic

N

Scale
O e B
w ’/// -

% e
Scale §\§

| ) T gt TR : R R [ o
(b) t (c) t

Figure 1. The relationship of axis
scaling in the time and spectral domains

(a) Original spectral event (b)
Harmonically-scaled event (c) Temporally
scaled event.

Because of the above duality, and
because scaling of the harmonic axis is
conceptually straight-forward, this
approach was utilized in the work reported
here to enable changes in either domain.
Schematically, the harmonic scaler |is
implemented channel-by-channel as shown in
figure 2.

-Jwit .jwit
T Bandwidth .
— mad EN Expand Ll Q 5 Q ey
L by a e
channel _l
outputs

FTigure 2. A single channel of a harmonic
scaler. Channel center frequency is Wy
scale factor is a.

Scaling of the harmonic axis by a factor,
2, in a discrete implementation requires
two operations. First, the effective
bandwidth of each channel must be scaled
so that the relationships among the
various bands are not altered by scaling
their center frequencies. Second, the
center frequencies of the various channels
must be scaled. This latter operation and
the synthesis remodulation may be combined
into an equivalent single operation. It
should be noted, however, that to avoid
aliasing during harmonic expansion (a>1),
analysis channels must be adequately
oversampled (by a factor of at least a).
The more involved of the two operations
above is the bandwidth scaling. Because
the effective bandwidth of each channel {s
not directly proportional to the phase
derivative as often assumed, the bandwidth
of the channel is not accurately expanded
by & when the phase derivative is scaled
by a. Kahn and Thomas (4] have pointed




out that the bandwidth of a simultaneously
amplitude and phase modulated sinusoid is,
in fact, a function of both modulating
functions. Represent the modulated output
sinusoid of the channel centered at w; as

c(t) = m(t)cos(wj t+p(t)] (18)

where m(t) and p(t), denoted below as m
and p, are the (real) channel amplitude
and phase functions. Then, for
non-deterministic signals the channel
bandwldth,(% , can be estimated using the
Kahn and Thomas bandwidth as

2 . .
q. = (E(R')+E(P'W H/E(R') (19
where the E denotes the expectation and
the dot the time derivative. Clearly, if
the amplitude-modulating function is a
constant, the approximation mentioned
above 1is accurate. If, however, the
amplitude portion of the bandwidth is a
significant, but not dominant, portion of
the total bandwidth, simple phase
derivative scaling will lead to
inaccurately scaled bands. This error can
produce synthesized signals which exhibit
reverberant effects reminiscent of comb
filtering. Such effects are particularly
evident in harmonically expanded signals
(i.e. for ad>l). To determine the a
corrected factor by which the phase
derivative should be scaled, assume that a
correct bandwidth-expanded signal, c  is
given by 4

c‘(t) = m‘(t)cos[w‘t+p3(t)] (20)

and that
m,(t) = am(t) (21)
p‘ (t) = a p(t) (22)

where a and a, must be real. Then
8'02.- = (E(n'}+a, E(F m’})/E(n"} (23)

Note that a, has no effect. Subsgituting
the equation (19) expression forQ into
(23), the value of a can be determined.

a, = a(1+(1-a"!)E(R?)/E(P*m D% (24)

This equation implies a conditional
relationship between a and a,. When
expanding bands (a>1), the number by which
the phase derivative must be scaled to
scale the bandwidth by a is greater than
a. When contracting bands (a<l), the
opposite is true. It should be noted that
when the amplitude modulation
contribution, E{m2}/E{m ]}, dominates the
total bandwidth, (24) may become
imaginary. This effect corresponds to a
lower limit on the total bandwidth

reduction available using the assumptions
of equations (21) and (22).

CONCLUS ION

The constant-Q transform has been
utilized to formulate a perception-related
definition of the rate-change problem.
This definition, along with the time
scaling property of the constant-Q
transform suggests a natural way of
implementing both harmonic and temporal
scale changes. The author's work proves
this method to be capable of good quality
compression and expansion for factors
between one-third and three.
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